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Abstract

This paper considers a scenario which is
slightly different from Statistical Machine
Translation (SMT) in that we are given
almost perfect knowledge about bilin-
gual terminology, considering the situa-
tion when a Japanese patent is applied
to or granted by the Japanese Patent Of-
fice (JPO). Technically, we incorporate
bilingual terminology into Phrase-based
SMT (PB-SMT) focusing on the statisti-
cal properties of them. The first mod-
ification is made on the word aligner
which incorporates knowledge about ter-
minology as prior knowledge. The sec-
ond modification is made both on the
language modeling and the translation
modeling which reflect the hierarchical
structure of bilingual terminology, that is
the non-compound characteristics of the
phrases, using the Pitman-Yor process-
based smoothing methods. Using 200k
JP–EN NTCIR corpus, our experimental
results show that the overall improvement
of this method was 1.10 BLEU point ab-
solute and 5% relative.

1 Introduction

This paper examines the situation when a
Japanese patent is applied to or granted by the
Japanese Patent Office (JPO) without being trans-
lated into English. Our target is to translate a
Japanese patent from Japanese into English. Two
notable characteristics in this context are that we
assume that we know perfect knowledge about

bilingual terminology in the training / develop-
ment / test corpora and that we know their corre-
spondences in these corpora as well. In practical
situation, this would be quite realistic: it is often
possible by borrowing human knowledge to find
out the correct terminology in English although it
may be difficult for an ordinary Japanese to con-
struct a correct English sentence.

We intend to assist this by Statistical Machine
Translation (SMT) (Brown et al., 1993; Marcu
and Wong, 2002; Chiang, 2005; Koehn, 2010).
Without loss of generality, we limit ourselves to
discuss it with Phrase-Based SMT (PB-SMT).
PB-SMT consists of translation modeling, which
is word alignment (Brown et al., 1993) followed
by phrase extraction (Och and Ney, 2003a), lan-
guage modeling (Stolcke, 2002), Minimum-Error
Rate Training (MERT) (Och and Ney, 2003b), and
decoding (Koehn et al., 2007). The keys to handle
this situation will be summarized by two issues
below.

Firstly, the prior knowledge about bilingual ter-
minology may not be effectively employed by the
conventional word aligner (Och and Ney, 2003a)
in translation modeling process. Bilingual termi-
nology, in general, consists ofn-to-m correspon-
dences between the source terminology and the
target terminology. Since word alignment aims
at obtaining1-to-n or n-to-1 correspondences, it
is in fact problematic to obtain such correspon-
dences after phrase extraction. Naive way to in-
corporate this is to do a grouping of terminology
into one word in both sides. Since a word aligner
does not recognize these word correspondences,
there is no guarantee that a word aligner detects
these word correspondences.
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Secondly, the prior knowledge about bilingual
terminology effects the output of translation mod-
eling. It is a well known fact that since the rel-
ative frequency or maximum likelihood estimate
does not consider zero frequencies, the less fre-
quent items will obtain with larger probability. It
is likely that the prior knowledge about bilingual
terminology will emphasize this phenomenon fur-
ther since the resulted phrase pairs become less
frequent due to this prior knowledge. Foster et al.
(Foster, 06) applied various smoothing technique
to translation model.

This paper is organized as follows. Section
2 introduces an MWE-sensitive word aligner for
the first problem. In Section 3 we mention
the smoothing technique based on the hierarchi-
cal Pitman-Yor process, which solves the second
problem. Experimental results are presented in
Section 4 by combining these techniques. Sec-
tion 5 concludes and provides avenues for further
research.

2 Translation Modeling with Prior
Knowledge

As a word aligner, we use an MWE-sensitive
word aligner to incorporate prior knowledge about
bilingual terminology (Okita et al., 2010). Here,
we do not need to extract MWEs, but such MWEs
are already assumed to be given as bilingul termi-
nology.

The EM algorithm-based word aligner uses
maximum likelihood in its M-step. Our
method replaces this maximum likelihood esti-
mate (shown in Equation (1)) with the MAP
(Maximum A Posteriori) estimate (shown in
Equation (2)), which is a basic Bayesian machine
learning method. Lett be a lexical translation
probability t(e|f); note that oftent is omitted in
word alignment literature but for our purposes this
needs to be explicit.

E
EXH : q(z;x) =p(z|x; θ)

M
MLE : t′ = arg max

t
Q(t, told) =

arg max
t

∑

x,z

q(z|x) log p(x, z; t) (1)

M
MAP : t′ = arg max

t
Q(t, told) + log p(t) =

arg max
t

∑

x,z

q(z|x) log p(x, z; t)

+ log p(t) (2)

Then, the priorlog p(t), a probability used to re-
flect the degree of prior belief about the occur-
rences of the events, can embed prior knowledge
about MWEs.

A prior for IBM Model 1 considers all possi-
ble alignments exhaustively in E-Step as in the
definition of EM algorithm (while IBM Model
3 and 4 only sample a neighborhood alignments
around the best alignment). Let us give infor-
mation about alignment link betweene and f
by T = {(sentID, ti, tj, posi, posj), . . . , } into
prior. The priorp(t) = p(t; e, f, T ) for given
word e and f in a sentence is defined simply 1
if they have alignment link, 0 if they are not con-
nected, and uniform if their link is not known:

p(t; ei, fi, T ) =







1 (ei = ti, fj = tj)
0 (ei = ti, fj 6= tj)
0 (ei 6= ti, fj = tj)
uniform (ei 6= ti, fj 6= tj)

Then we embed this prior in the M-step of EM al-
gorithm where we replaced its likelihood estimate
with MAP estimate (Okita et al., 2010). Although
this is for the case of IBM Model 1, IBM Models
3 and 4 are essentially the same except that they
are not proper. Due to the space problems here,
further details can be found in (Okita et al., 2010).

3 Language Model and Translation
Model Smoothing

This section describes the statistical smoothing
method based on hierarchical Pitman-Yor pro-
cesses, which is a nonparametric generalization
of the Dirichlet distribution that produces power-
law distributions (Teh, 2006; Goldwater et al.,
2006). Hence, this smoothing method of hier-
archical Pitman-Yor processes does a smoothing
task under the prior knowledge that the underly-
ing distribution has power-law properties.

3.1 Language Model Smoothing

Various pieces of research have been carried
out in which hierarchical Pitman-Yor processes
have been applied to language models (Hierarchi-
cal Pitman-Yor Language Model (HPYLM) (Teh,
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2006; Mochihashi and Sumita, 2007; Huang and
Renals, 2009)). This model is shown to be su-
perior to the interpolated Kneser-Ney methods
(Kneser and Ney, 1995) and comparable to the
modified Kneser Ney methods in terms of per-
plexity. (Okita and Way, 2010) empirically veri-
fied that HPYLM improves BLEU score as well
although it employed a slight modification on
the decoding process. Following descriptions are
based on various literatures (Teh, 2006; Mochi-
hashi and Sumita, 2007; Mochihashi et al., 2009;
Okita and Way, 2010).

HPYLM: Generative Model The Pitman-Yor
process (Pitman, 1995) is defined as a three-
parametric distributionPY (d, θ,G0) whered de-
notes a discount parameter,θ a strength parameter,
andG0 a base distribution. One nice property is
that the Pitman-Yor process is known to produce a
power-law distribution: the more words have been
assigned to a draw fromG0, the more likely sub-
sequent words will be assigned to the draw, while
the more we draw fromG0, the more likely a new
word will be assigned to a new draw fromG0.

HPYLM is constructed in the following way
encoding such nice property of the power-law dis-
tribution. A graphical model of HPYLM is shown
in Figure 1. Firstly, the Pitman-Yor process is
placed as a prior in the generative model. For a
given a contextu, let Gu(w) be the probability of
the current word taking valuew. Using a Pitman-
Yor process as the prior forGu[Gu(w)]w∈W as in
(3):

Gu|d|u|, θ|u|, Gπ(u) ∼ PY (d|u|, θ|u|, Gπ(u)) (3)

whereπ(u) is a function whose parameter is a
contextu, the discount and strength parameters
are functions of the length|u| of the context, while
the mean vector isGπ(u), the vector of probabil-
ities of the current word given all but the earliest
word in the context.

Secondly,π(u) is defined as the suffix ofu con-
sisting of all but the earliest word in Equation (3)
as (Teh, 2006). This signifies thatu is n-gram
words andπ(u) is (n-1)-gram words; this induc-
tion of Equation (3) makes ann-gram hierarchy.

Thirdly, as the last sentence suggests, such a
prior of the Pitman-Yor processes is placedre-

n
i=1,...,n_u

X_ui

theta_u

d_0

d_u G_u

theta_0

G_0

G_o

Figure 1: Graphical model of hierarchical Pitman-
Yor process.

cursively over Gπ(u) in the generative model as
in Equation (4):







Gu|d|u|, θ|u|, Gπ(u) ∼ PY (d|u|, θ|u|, Gπ(u))

. . .
G∅|d0, θ0, G0 ∼ PY (d0, θ0, G0)

(4)

This is repeated until we get toG0, the vector
of probabilities over the current word given the
empty context∅. G0 is the global mean vec-
tor, given a uniform value ofG0 = 1/V for all
w ∈ W .

HPYLM: Inference One procedure to do an in-
ference in order to generate words drawn fromG
is called Chinese restaurant process, which iter-
atively marginalizes outG. Note that when the
vocabulary is finite,PY (d, θ,G0) has no known
analytic form.

We assume the language modelling. Leth be
an n-gram context; for example in 3-gram, this is
h = {w1, w2}. A Chinese restaurant contains an
infinite number of tablest, each with infinite seat-
ing capacity. Customers, which are the n-gram
countsc(w|h), enter the restaurant and seat them-
selves over the tables1, . . . , thw·. The first cus-
tomer sits at the first available table, while each
of the subsequent customers sits at an occupied
table with probability proportional to the number
of customers already sitting therechwk − d, or at
a new unoccupied table with probability propor-
tional toθ + d · th· as is shown in (5):

w|h ∼

{

chwk − d (1 ≤ k ≤ thw).
θ + d · th· (k = new).

(5)
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wherechwk is the number of customers seated at
tablek until now, andth· =

∑

w thw is the total
number of tables inh.

Hence, the predictive distribution ofn-gram
probability in HPYLM is recursively calculated as
in Equation (6):

p(w|h) =
c(w|h) − d · thw

θ + c(h)
+

θ + d · th·
θ + c(h)

p(w|h′) (6)

wherep(w|h′) is the same probability using a(n-
1)-gram contexth′. The case whenthw = 1 corre-
sponds to an interpolated Kneser-Ney smoothing
(Kneser and Ney, 1995).

Implementation of this inference procedure re-
lates to the Markov chain Monte Carlo sampling.
The simplest way is to build a Gibbs sampler
which randomly selectsn-gram words, draws a
binary decision as to which(n − 1)-gram words
originated from, and updates the language model
according to the new lower-ordern-grams (Gold-
water et al., 2006). A blocked Gibbs sampler is
proposed by Mochihashi et al. (Mochihashi et al.,
2009), which is originally proposed for segmen-
tation. This algorithm is an iterative procedure,
which randomly selects an-gram word, removes
the “sentence” data of thisn-gram word, and up-
dates by adding a new “sentence” according to the
newn-grams. This procedure is expected to mix
rapidly compared to the simple Gibbs sampler.

3.2 Translation Model Smoothing

An n-gram is often defined as a subsequence of n
items from a given sequence where items can be
phonemes, syllables, letters, words or base pairs.
Although we can extend this definition ofn-gram
to the one which includes ‘phrases’, let us use the
different term ‘n-phrase-gram’ instead in this pa-
per, in order not to mix up with then-gram for
words. Fig. 2 shows a typical example of phrase
extraction process. In this process, under the con-
sistency constrained, phrase pairs are extracted
which is depicted in the center. Note that this fig-
ure is depicted separating the source and the target
sides.

Fig. 3 shows the same figure if we depict them
in pairs. The lowest column includes only 1-
phrase-grams, the second lowest column includes
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Figure 2: A toy example of phrase extraction pro-
cess. Resulted phrase pairs can be described as a
lattice structure.

2-phrase-grams, and so on. The line connecting
two nodes indicates parent-child relations. Then,
this becomes the lattice structure of the generated
phrase pairs. These generated phrase pairs may
have several paths to yield the whole sentences.
As is similar with HPYLM, we can limit this by
considering the suffix of a sequence, meaning that
we can process a sequence always from left-to-
right. Hence, although the natural lattice would
include the dashed lines, the dashed lines can be
eliminated if we impose constraint that we should
always read the suffix of this sequence from left-
to-right. This constraint makes the resulted struc-
ture a tree. If the resulted structure is a tree, we
can employ the same strategy with HPYLM. The
predictive distribution can be calculated by Equa-
tion (6) with the replacement ofn-grams withn-
phrase-grams.

4 Experimental Results

Our baseline was a standard log-linear PB-SMT
system based on Moses. The GIZA++ imple-
mentation (Och and Ney, 2003a) of IBM Model
4 was used for word alignment. For phrase ex-
traction the grow-diag-final heuristics described in
(Och and Ney, 2003a) was used to derive the re-
fined alignment. We then performed MERT pro-
cess which optimizes the BLEU metric, while a
5-gram language model was derived with Kneser-
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michael assumes that he will stay in the house|| michael geht davon aus, dass er im haus bleibt

michael assumes that he|| michael geht davon aus , dass er

michael michael || assumes  geht davon aus||

michael assumes michael geht davon aus||

dass erthat he ||

in the || im house || haus

in the house || im haus

that he will stay in the house || dass er im haus bleibt

that || dass   er  he ||

will stay || bleibt

will stay in the house || im haus bleibtmichael assumes that michael geht davon aus , dass||

Lattice structure (Tree structure if we only accept real lines)

1−phrase−gram

2−phrase−gram

Figure 3:

Ney smoothing trained with SRILM on the En-
glish side of the training data. We used Moses for
decoding.

We used NTCIR-8 patent corpus for JP–EN
(Fujii et al., 2010). We randomly selected 200k
sentence pairs as training corpus. For JP–EN
patent corpus, we used 1.2k sentence for devel-
opment set while we used a test set prepared for
NTCIR-8 evaluation campaign. We prepared ter-
minology in this way: we extracted bilingual ter-
minology by heuristic MWE-extraction strategy
which we described in (Okita et al., 2010). Then,
we corrected these extracted terminology by hand
inspecting the corpora.

JP–EN BLEU
Base 21.68
MWE only 22.48
Smoothing only 22.44
Both 22.78

Table 1: Results for 200k JP–EN sentences

Table 1 shows our results. The improvement of
BLEU by the modification on word aligner was
0.80 BLEU point absolute and 3.6% relative, the
modification on language model and on transla-
tion model by the hierarchical Pitman-Yor process
was 0.76 BLEU point absolute and 3.5% relative.
Finally, the overall method was 1.10 BLEU point
absolute and 5.0% relative.

5 Conclusion and Further Studies

This paper considered a scenario in SMT that we
are given the perfect knowledge about bilingual
terminology. This scenario consisted of two mod-

ifications of PB-SMT. Firstly, we modified a word
aligner in order to incorporate prior knowledge
about bilingual terminology. Secondly, we em-
ployed the statistical smoothing technique both on
language model and translation model. We ob-
tained the improvement of 1.10 BLEU point ab-
solute and 5.0% relative for this settings.

There are several avenues for further research.
Firstly, this paper considers the situation where
we have prior knowledge about bilingual termi-
nology. Although we discussed how to incor-
porate this prior knowledge into a word aligner,
we did not discuss how to incorporate this prior
knowledge into a decoder. In fact, this seems to
be a lucky situation since the stack decoding al-
gorithm (Koehn, 2010) was capable of handling
this situation although the search space of decod-
ing process was reduced. More generic case of
prior knowledge may be worth trying. For exam-
ple, suppose that we have bilingual sentence pat-
terns a priori. In this case, it will raise the neces-
sity of modifying the decoding algorithm in order
to incorporate such prior knowledge. Secondly,
this paper considers the in-domain prior knowl-
edge about terminology in terms of training cor-
pus. it would be interesting to see whether the
approach of hierarchical Pitman-Yor process may
work as well for the out-of-domain prior knowl-
edge although our view is that this may be far be-
yond the reach since this approach can be applied
to a smoothing task, but not to a domain adapta-
tion task.
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